34 research outputs found

    SM2RAIN–ASCAT (2007–2018): global daily satellite rainfall data from ASCAT soil moisture observations

    Get PDF
    Abstract. Long-term gridded precipitation products are crucial for several applications in hydrology, agriculture and climate sciences. Currently available precipitation products suffer from space and time inconsistency due to the non-uniform density of ground networks and the difficulties in merging multiple satellite sensors. The recent "bottom-up" approach that exploits satellite soil moisture observations for estimating rainfall through the SM2RAIN (Soil Moisture to Rain) algorithm is suited to build a consistent rainfall data record as a single polar orbiting satellite sensor is used. Here we exploit the Advanced SCATterometer (ASCAT) on board three Meteorological Operational (MetOp) satellites, launched in 2006, 2012, and 2018, as part of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Polar System programme. The continuity of the scatterometer sensor is ensured until the mid-2040s through the MetOp Second Generation Programme. Therefore, by applying the SM2RAIN algorithm to ASCAT soil moisture observations, a long-term rainfall data record will be obtained, starting in 2007 and lasting until the mid-2040s. The paper describes the recent improvements in data pre-processing, SM2RAIN algorithm formulation, and data post-processing for obtaining the SM2RAIN–ASCAT quasi-global (only over land) daily rainfall data record at a 12.5 km spatial sampling from 2007 to 2018. The quality of the SM2RAIN–ASCAT data record is assessed on a regional scale through comparison with high-quality ground networks in Europe, the United States, India, and Australia. Moreover, an assessment on a global scale is provided by using the triple-collocation (TC) technique allowing us also to compare these data with the latest, fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5), the Early Run version of the Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG), and the gauge-based Global Precipitation Climatology Centre (GPCC) products. Results show that the SM2RAIN–ASCAT rainfall data record performs relatively well at both a regional and global scale, mainly in terms of root mean square error (RMSE) when compared to other products. Specifically, the SM2RAIN–ASCAT data record provides performance better than IMERG and GPCC in data-scarce regions of the world, such as Africa and South America. In these areas, we expect larger benefits in using SM2RAIN–ASCAT for hydrological and agricultural applications. The limitations of the SM2RAIN–ASCAT data record consist of the underestimation of peak rainfall events and the presence of spurious rainfall events due to high-frequency soil moisture fluctuations that might be corrected in the future with more advanced bias correction techniques. The SM2RAIN–ASCAT data record is freely available at https://doi.org/10.5281/zenodo.3405563 (Brocca et al., 2019) (recently extended to the end of August 2019)

    Modeling the response of soil moisture to climate variability in the Mediterranean region

    Get PDF
    International audienceFuture climate scenarios for the Mediterranean region indicate a possible decrease in annual precipitation associated with an intensification of extreme rainfall events in the coming years. A major challenge in this region is to evaluate the impacts of changing precipitation patterns on extreme hydrological events such as droughts and floods. For this, it is important to understand the impact of climate change on soil moisture since it is a proxy for agricultural droughts, and the antecedent soil moisture condition plays a key role on runoff generation. This study focuses on 10 sites, located in southern France, with available soil moisture, temperature, and precipitation observations for a 10-year time period. Soil moisture is simulated at each site at the hourly time step using a model of soil water content. The sensitivity of the simulated soil moisture to different changes in precipitation and temperature is evaluated by simulating the soil moisture response to temperature and precipitation scenarios generated using a delta change method for temperature and a stochastic model (the Neyman–Scott rectangular pulse model) for precipitation. Results show that soil moisture is more impacted by changes in precipitation intermittence than precipitation intensity and temperature. Overall, increased temperature and precipitation intensity associated with more intermittent precipitation leads to decreased soil moisture and an increase in the annual number of days with dry soil moisture conditions. In particular, a temperature increase of +4 ∘C combined with a decrease of annual rainfall between 10 % and 20 %, corresponding to the current available climate scenarios for the Mediterranean, lead to a lengthening of the drought period from June to October with an average of +28 d of soil moisture drought per year

    SM2RAIN-ASCAT (2007–2018): global daily satellite rainfallfrom ASCAT soil moisture

    Get PDF
    Abstract. Long-term gridded precipitation products are crucial for several applications in hydrology, agriculture and climate sciences. Currently available precipitation products obtained from rain gauges, remote sensing and meteorological modelling suffer from space and time inconsistency due to non-uniform density of ground networks and the difficulties in merging multiple satellite sensors. The recent bottom up approach that uses satellite soil moisture observations for estimating rainfall through the SM2RAIN algorithm is suited to build long-term and consistent rainfall data record as a single polar orbiting satellite sensor is used. We exploit here the Advanced SCATterometer (ASCAT) on board three Metop satellites, launched in 2006, 2012 and 2018. The continuity of the scatterometer sensor on European operational weather satellites is ensured until mid-2040s through the Metop Second Generation Programme. By applying SM2RAIN algorithm to ASCAT soil moisture observations a long-term rainfall data record can be obtained, also operationally available in near real time. The paper describes the recent improvements in data pre-processing, SM2RAIN algorithm formulation, and data post-processing for obtaining the SM2RAIN-ASCAT global daily rainfall dataset at 12.5 km sampling (2007–2018). The quality of SM2RAIN-ASCAT dataset is assessed on a regional scale through the comparison with high-quality ground networks in Europe, United States, India and Australia. Moreover, an assessment on a global scale is provided by using the Triple Collocation technique allowing us also the comparison with other global products such as the latest European Centre for Medium-Range Weather Forecasts reanalysis (ERA5), the Global Precipitation Measurement (GPM) mission, and the gauge-based Global Precipitation Climatology Centre (GPCC) product. Results show that the SM2RAIN-ASCAT rainfall dataset performs relatively well both at regional and global scale, mainly in terms of root mean square error when compared to other datasets. Specifically, SM2RAIN-ASCAT dataset provides better performance better than GPM and GPCC in the data scarce regions of the world, such as Africa and South America. In these areas we expect the larger benefits in using SM2RAIN-ASCAT for hydrological and agricultural applications.The SM2RAIN-ASCAT dataset is freely available at https://doi.org/10.5281/zenodo.2591215

    A Review of the Applications of ASCAT Soil Moisture Products

    Get PDF
    Remote sensing of soil moisture has reached a level of good maturity and accuracy for which the retrieved products are ready to use in real-world applications. Due to the importance of soil moisture in the partitioning of the water and energy fluxes between the land surface and the atmosphere, a wide range of applications can benefit from the availability of satellite soil moisture products. Specifically, the Advanced SCATterometer (ASCAT) on board the series of Meteorological Operational (Metop) satellites is providing a near real time (and long-term, 9+ years starting from January 2007) soil moisture product, with a nearly daily (sub-daily after the launch of Metop-B) revisit time and a spatial sampling of 12.5 and 25 km. This study first performs a review of the climatic, meteorological, and hydrological studies that use satellite soil moisture products for a better understanding of the water and energy cycle. Specifically, applications that consider satellite soil moisture product for improving their predictions are analyzed and discussed. Moreover, four real examples are shown in which ASCAT soil moisture observations have been successfully applied toward: 1) numerical weather prediction, 2) rainfall estimation, 3) flood forecasting, and 4) drought monitoring and prediction. Finally, the strengths and limitations of ASCAT soil moisture products and the way forward for fully exploiting these data in real-world applications are discussed.228523062

    Predicting respiratory failure in patients infected by SARS-CoV-2 by admission sex-specific biomarkers

    Get PDF
    Background: Several biomarkers have been identified to predict the outcome of COVID-19 severity, but few data are available regarding sex differences in their predictive role. Aim of this study was to identify sex-specific biomarkers of severity and progression of acute respiratory distress syndrome (ARDS) in COVID-19. Methods: Plasma levels of sex hormones (testosterone and 17ÎČ-estradiol), sex-hormone dependent circulating molecules (ACE2 and Angiotensin1-7) and other known biomarkers for COVID-19 severity were measured in male and female COVID-19 patients at admission to hospital. The association of plasma biomarker levels with ARDS severity at admission and with the occurrence of respiratory deterioration during hospitalization was analysed in aggregated and sex disaggregated form. Results: Our data show that some biomarkers could be predictive both for males and female patients and others only for one sex. Angiotensin1-7 plasma levels and neutrophil count predicted the outcome of ARDS only in females, whereas testosterone plasma levels and lymphocytes counts only in males. Conclusions: Sex is a biological variable affecting the choice of the correct biomarker that might predict worsening of COVID-19 to severe respiratory failure. The definition of sex specific biomarkers can be useful to alert patients to be safely discharged versus those who need respiratory monitoring

    Trends in flow intermittence for European rivers

    Get PDF
    Intermittent rivers are prevalent in many countries across Europe, but little is known about the temporal evolution of intermittence and its relationship with climate variability. Trend analysis of the annual and seasonal number of zero-flow days, the maximum duration of dry spells and the mean date of the zero-flow events is performed on a database of 452 rivers with varying degrees of intermittence between 1970 and 2010. The relationships between flow intermittence and climate are investigated using the standardized precipitation evapotranspiration index (SPEI) and climate indices describing large-scale atmospheric circulation. The results indicate a strong spatial variability of the seasonal patterns of intermittence and the annual and seasonal number of zero-flow days, highlighting the controls exerted by local catchment properties. Most of the detected trends indicate an increasing number of zero-flow days, which also tend to occur earlier in the year, particularly in southern Europe. The SPEI is found to be strongly related to the annual and seasonal zero-flow day occurrence in more than half of the stations for different accumulation times between 12 and 24 months. Conversely, there is a weaker dependence of river intermittence with large-scale circulation indices. Overall, these results suggest increased water stress in intermittent rivers that may affect their biota and biochemistry and also reduce available water resources

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Exploiting Satellite-Based Surface Soil Moisture for Flood Forecasting in the Mediterranean Area: State Update Versus Rainfall Correction

    No full text
    Many satellite soil moisture products are today globally available in near real-time. These observations are of paramount importance for enhancing the understanding of the hydrological cycle and particularly useful for flood forecasting purposes. In recent decades, several studies assimilated satellite soil moisture observations into rainfall-runoff models to improve their flood forecasting skills. The rationale is that a better representation of the catchment states leads to a better stream flow estimation. By exploiting the strong physical connection between the soil moisture dynamic and rainfall, some recent studies demonstrated that satellite soil moisture observations can be also used for enhancing the quality of rainfall observations. Given that the quality of the rainfall is one of the main drivers of the hydrological model uncertainty, this begs the question—to what extent updating soil moisture states leads to better flood forecasting skills than correcting rainfall forcing? In this study, we try to answer this question by using rainfall-runoff observations from 10 catchments throughout the Mediterranean area and a continuous rainfall-runoff model—MISDc—forced with reanalysis- and satellite-based rainfall observations. Satellite soil moisture retrievals from the Advanced SCATterometer (ASCAT) are either assimilated into MISDc model via the Ensemble Kalman filter to update model states or, alternatively, used to correct rainfall observations derived from a reanalysis and a satellite-based product through the integration with soil moisture-based rainfall estimates. 4–9 years (depending on the catchment) of stream flow observations are organized into calibration and validation periods to test the two different schemes. Results show that the rainfall correction is favourable if the target is the predictions of high flows while for low flows there is a small advantage of the state correction scheme with respect to the rainfall correction. The improvements for high flows are particularly large when the quality of the rainfall is relatively poor with important implications for large-scale flood forecasting in the Mediterranean area

    REFINEMENT OF SEEPAGE VULNERABILITY ESTIMATE IN NATIONAL LEVEE DATABASE OF ITALY

    No full text
    Piping induced by seepage is a frequent cause of failure for earthen levees. The probability that the seepage line in the levee body intercepts the landside slope provides an important indication of the levee vulnerability to seepage. Nevertheless, the definition of the seepage paths associated to assigned water levels is affected by the difficulty in estimating the hydraulic parameters that control the filtration process, chiefly the soil hydraulic conductivity. The ideation of expeditious and operational methods, able to analyse extended levee systems quickly and to identify the most vulnerable portions of the systems, is therefore of paramount importance. To this purpose, an existing practical procedure for the evaluation of levee vulnerability to seepage, based on the definition of a vulnerability index (Camici et al., 2015), is here enhanced and it is used to produce 'synthetic diagrams', easily applicable to derive the seepage probability of the dykes whose hydraulic conductivity is unknown. The procedure is applied for the Tiber River (central Italy) and the Tanaro River (northern Italy). The Italian levee database (DANTE) is briefly presented in the final part of the paper: it is conceived as a dynamic geospatial tool, addressed to collect all the available information on levee systems and to usefully support authorities involved in hydraulic risk mitigation
    corecore